Nutrients (Mar 2019)

Dianthus superbus Improves Glomerular Fibrosis and Renal Dysfunction in Diabetic Nephropathy Model

  • Jung Joo Yoon,
  • Ji Hun Park,
  • Hye Jin Kim,
  • Hong-Guang Jin,
  • Hye Yoom Kim,
  • You Mee Ahn,
  • Youn Chul Kim,
  • Ho Sub Lee,
  • Yun Jung Lee,
  • Dae Gill Kang

DOI
https://doi.org/10.3390/nu11030553
Journal volume & issue
Vol. 11, no. 3
p. 553

Abstract

Read online

Glomerular fibrosis is caused by an accumulation of intercellular spaces containing mesangial matrix proteins through either diffused or nodular changes. Dianthus superbus has been used in traditional medicine as a diuretic, a contraceptive, and an anti-inflammatory agent. The aim of this study was to investigate the effects of Dianthus superbus-EtOAc soluble fraction (DS-EA) on glomerular fibrosis and renal dysfunction, which has been implicated in diabetic nephropathy in human renal mesangial cells and db/db mice. DS-EA was administered to db/db mice at 10 or 50 mg/kg/day for 8 weeks. DS-EA treatment significantly ameliorated blood glucose, insulin, the homeostasis model assessment of insulin resistance (HOMA-IR) index, and HbA1c in diabetic mice. DS-EA decreased albumin excretion, creatinine clearance (Ccr), and plasma creatinine levels. DS-EA also ameliorated the levels of kidney injury molecules-1 (KIM-1) and C-reactive protein. DS-EA reduced the periodic acid-Schiff (PAS) staining intensity and basement membrane thickening in glomeruli of the diabetic nephropathy model. In addition, DS-EA suppressed transforming growth factor-β (TGF-β)/Smad signaling. Collagen type IV, a glomerular fibrosis biomarker, was significantly decreased upon DS-EA administration. DS-EA pretreatment attenuated levels of inflammation factors such as intracellular cell adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1). DS-EA inhibited the translocation of nuclear factor kappa B (NF-κB) in Angiotensin II (Ang II)-stimulated mesangial cells. These findings suggest that DS-EA has a protective effect against renal inflammation and fibrosis. Therefore, DS-EA may serve as a potential therapeutic agent targeting glomerulonephritis and glomerulosclerosis, which lead to diabetic nephropathy.

Keywords