PLoS ONE (Jan 2023)

Preliminary study on the application of bioimpedance analysis to measure the psoas major muscle in older adults.

  • Lee-Ping Chu,
  • Kuen-Tsann Chen,
  • Hsueh-Kuan Lu,
  • Chung-Liang Lai,
  • Hsing-Ching Huang,
  • Kuen-Chang Hsieh

DOI
https://doi.org/10.1371/journal.pone.0275884
Journal volume & issue
Vol. 18, no. 3
p. e0275884

Abstract

Read online

For the assessment of sarcopenia or other geriatric frailty syndromes, psoas major area may be one of the primary indicators. Aim to develop and cross-validate the psoas cross-sectional area estimation equation of L3-L4 of the elderly over 60 years old by bioelectrical impedance analysis (BIA). Ninety-two older adults with normal mobility were enrolled (47 females, 45 males), and were randomly divided into a modeling group (MG, n = 62) and validation group (VG, n = 30). Computed tomography (CT) was used to measure the psoas major area at the' L3-L4 lumbar vertebrae height as a predictor. Estimated variables were height (h), whole body impedance (Zwhole), whole body impedance index (h2/Zwhole, WBI), age, gender (female = 0, male = 1), and body weight (weight) by standing BIA. Relevant variables were estimated using stepwise regression analysis. Model performance was confirmed by cross-validation. BIA estimation equation for PMM obtained from the MG was: (PMMBIA = 0.183 h2/Z- 0.223 age + 4.443 gender + 5.727, r2 = 0.702, n = 62, SEE = 2.432 cm2, p < 0.001). The correlation coefficient r obtained by incorporating the VG data into the PMM equation was 0.846, and the LOA ranged from -4.55 to 4.75 cm2. PMMBIA and PMMCT both correlate highly with MG or VG with small LOA. The fast and convenient standing BIA for measuring PMM may be a promising method that is worth developing.