Minerals (Oct 2018)

Critical Coalescence Concentration (CCC) for Surfactants in Aqueous Solutions

  • Danuta Szyszka

DOI
https://doi.org/10.3390/min8100431
Journal volume & issue
Vol. 8, no. 10
p. 431

Abstract

Read online

This paper presents results of tests performed to determine the minimum concentration of a surfactant used at which the probability of occurrence of coalescence of air bubbles during flotation is low. Tests of the coalescence phenomenon were carried out using selected flotation frothing agents such as poly(ethylene glycol) butyl ethers, which are the ingredients of industrial flotation frothers known under the brand name of CORFLOT. Studies were carried out for three successive butyl ethers in the homologous series: ethylene glycol butyl ether (C4E1), diethylene glycol butyl ether (C4E2), triethylene glycol butyl ether (C4E3). Critical coalescence concentration (CCC) surfactant values were determined using the linear regression method. The investigation proved the existence of a clear relationship between the number of ethylene glycol groups in the ether molecule CnH2n+2(OC2O5)nOH and the value of the CCC. The results obtained show a correlation between the CCC values and the molecular weights (MW) of the tested frothers. This article shows the relationship between CCC value and hydrophilic–lipophilic balance (HLB)/MW for the family of polyglycol ethers. Results show the correlation between the critical coalescence concentration and the value of HLB index, being the measure of hydrophilic–lipophilic balance of surfactants (such as flotation frothers), expressed by the weight ratio of hydrophilic portion of the surfactant molecule and its molecular weight. Histograms of air bubbles created a distribution curve similar to the Gauss distribution pattern. The average diameter of air bubbles tends to decrease along with increasing concentration of the tested surfactants. Two characteristic zones that may be distinguished on the graphs show the relationship between Sauter mean diameter and frother concentration. The tests carried out demonstrate that the critical coalescence concentration may be used to characterize the flotation process, as, knowing the CCC values of the frothers used, we are able to control the consumption of foaming agents during mineral processing.

Keywords