Труды Института системного программирования РАН (Sep 2019)
Digital Modelling of Production Engineering for Metalworking Machine Shops
Abstract
This article presents a modular approach that reduces the labor costs for the technological preparation of small-scale metalworking production. Its idea is to formalize the technological processes, allowing generating them and their documentation from pre-prepared parameterized templates stored in the special database. Details to be processed are represented as the structures of their basic geometric components. For the template of machining operations for each component, symbolic parameters are fixed, defining the workpiece used, cutting tools options, machining modes, etc. The result of formalization is an automatically generated technological route in the form of an MSC diagram encoding it as a sequence of macro-operations for the machinery. This symbolic model is adapted to a specific instance of the detail being manufactured by replacing the symbolic variables with specific values set by the technologist. The MSC diagram is supplemented with the results of time and cost calculations of technological routes, which allows selection of the most efficient one. The correctness of the technological routes is ensured in the process of symbolic verification by checking the permissible ranges of parameters of the MSC diagram, as well as checking the correctness of order and compatibility of operations in the sequence. The results of the whole process obtained from the MSC diagram are the set of technological documentation of preproduction, which, in particular, includes a set of operating cards, and the fine-tuned schedule of production after its digital modeling with the real resources of the workshop taken into account. According to technologists, by applying the described automation, the time to prepare documentation for details of medium complexity is reduced from several weeks to 1-2 days.
Keywords