Parasites & Vectors (Oct 2019)

Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens

  • Troy J. Kieran,
  • Kaylee M. H. Arnold,
  • Jesse C. Thomas,
  • Christina P. Varian,
  • Azael Saldaña,
  • Jose E. Calzada,
  • Travis C. Glenn,
  • Nicole L. Gottdenker

DOI
https://doi.org/10.1186/s13071-019-3761-8
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, which causes Chagas disease. Rhodnius pallescens is a major vector of Chagas disease in Panama. Understanding the microbial ecology of disease vectors is important in the development of vector management strategies that target vector survival and fitness. In this study we examined the whole-body microbial composition of R. pallescens from three locations in Panama. Methods We collected 89 R. pallescens specimens using Noireau traps in Attalea butyracea palms. We then extracted total DNA from whole-bodies of specimens and amplified bacterial microbiota using 16S rRNA metabarcoding PCR. The 16S libraries were sequenced on an Illumina MiSeq and analyzed using QIIME2 software. Results We found Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes to be the most abundant bacterial phyla across all samples. Geographical location showed the largest difference in microbial composition with northern Veraguas Province having the most diversity and Panama Oeste Province localities being most similar to each other. Wolbachia was detected in high abundance (48–72%) at Panama Oeste area localities with a complete absence of detection in Veraguas Province. No significant differences in microbial composition were detected between triatomine age class, primary blood meal source, or T. cruzi infection status. Conclusions We found biogeographical regions differ in microbial composition among R. pallescens populations in Panama. While overall the microbiota has bacterial taxa consistent with previous studies in triatomine microbial ecology, locality differences are an important observation for future studies. Geographical heterogeneity in microbiomes of vectors is an important consideration for future developments that leverage microbiomes for disease control.

Keywords