IEEE Photonics Journal (Jan 2021)
Colloidal PbS Quantum Dots for Visible-to-Near-Infrared Optical Internet of Things
Abstract
The emergence of optical Internet of Things (optical-IoT) for sixth-generation (6G) networks has been envisaged to relieve the bandwidth congestion in the conventional radio frequency (RF) channel, and to support the ever-increasing number of smart devices. Among the plethora of device innovations deemed essential for fortifying the development, herein we report on the visible-to-near-infrared color-conversion luminescent-dyes based on lead sulphide quantum dots (PbS QDs), so as to achieve an eye-safe high-speed optical link. The solution-processed PbS QDs exhibited strong absorption in the visible range, radiative recombination lifetime of 6.4 $\mu$s, as well as high photoluminescence quantum yield of up to 88%. Our proof-of-principle demonstration based on an orthogonal frequency-division multiplexing (OFDM) modulation scheme established an infrared data transmission of 0.27 Mbit/s, readily supporting an indoor optical-IoT system, and shed light on the possibility for PbS-integrated transceivers in supporting remote access control of multiple nodes. We further envisaged that our investigations could find applications in future development of solution-processable PbS-integrated luminescent fibers, concentrators, and waveguides for high-speed optical receivers.
Keywords