Energies (Sep 2019)
Influence of Photoperiods on Microalgae Biofilm: Photosynthetic Performance, Biomass Yield, and Cellular Composition
Abstract
Microalgae have immense potential as biological sources to produce biofuels and high-value biomolecules. Biofilm-based microalgae cultivation has attracted much interest recently because of its high biomass productivity, reduced water use, and low cost of harvesting. This study aimed to understand the effect of photoperiod on three microalgae biofilms, including Nannochloris oculata, Chlorella sp., and Chlorella pyrenoidosa. The examined photoperiods were 3:3 s, 5:5 s, 30:30 min, 12:12 h (light-period-to-dark-period ratio), and continuous lighting. By determining the maximum quantum yield and relative electron transport rate of photosystem II, we found that photoperiods on the seconds scale improved photosynthetic performance of microalgae biofilm. Biomass yield and lipid content of these three microalgae cultured under the photoperiod with the seconds scale increased by 11%−24% and 7%−22%, respectively, compared with those cultured under continuous lighting. In addition, the photoperiods of 3:3 s, 5:5 s, 30:30 min, and 12:12 h were beneficial for protein synthesis. These results have important implications in establishing suitable light regimes for microalgae biofilm-based cultivation systems.
Keywords