Data in Brief (Mar 2016)
Comparison of bactericidal and cytotoxic activities of trichogin analogs
Abstract
Peptaibiotics are a group of membrane active peptides of fungal origin. They typically contain α-aminoisobutyric acid (Aib; 1-letter code, U) and other non-coded residues (Toniolo and Brückner, 2009; Neumann et al., 2015; Benedett et al., 1982) [1–3] stabilizing their helical structure. Peptaibols are peptaibiotics carrying a 1, 2-aminoalcohol at the C-terminus. When a fatty acid chain (of 8–10 carbon atoms) is present at their N-terminus, they are called lipopeptaibols (Toniolo et al., 2001; Degenkolb et al., 2003) [4,5]. We found (Tavano et al., 2015) [6] that the lipopeptaibol trichogin displays no antibacterial effects up to 64 µM, against both Gram− and Gram+ bacteria, but kills tumor and healthy human cells via a mechanism requiring both the C-terminal primary alcohol group and the N-terminal n-octanoyl moiety, with EC50s around 4–5 µM. However, the substitution of single Gly residues with Lys strongly improves anti-Gram+ activity (Tavano et al., 2015; De Zotti, Biondi, Park et al., 2012; De Zotti, Biondi, Peggion et al., 2012) [6–8]. To further characterize the activity of trichogin analogs as antibiotics and cytotoxic agents, we here manipulated the peptide helix amphipathicity by means of two different substitutions: (i) Aib to Leu (De Zotti et al., 2012) [7] or (ii) multiple Gly to Lys changes (Tavano et al., 2015; De Zotti, Biondi, Park et al., 2012; De Zotti, Biondi, Peggion, Formaggio et al., 2012; De Zotti, Biondi, Peggion, De Poli et al., 2012) [6–9]. The antibacterial activity against four commensal or opportunistic bacterial species and the cytotoxicity against a panel of 9 healthy and tumor-derived eukaryotic cell types (including erythrocytes) are reported as MIC and EC50 (MTS - [3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)]-2H-tetrazolium- reduction and LDH - lactate dehydrogenase - release assay). Keywords: Peptaibols, Trichogin, Antibaterial activity, Cytotoxicity