Applied Microbiology (Mar 2024)

Longitudinal Sequencing and Variant Detection of SARS-CoV-2 across Southern California Wastewater

  • Jason A. Rothman,
  • Andrew Saghir,
  • Amity G. Zimmer-Faust,
  • Kylie Langlois,
  • Kayla Raygoza,
  • Joshua A. Steele,
  • John F. Griffith,
  • Katrine L. Whiteson

DOI
https://doi.org/10.3390/applmicrobiol4020044
Journal volume & issue
Vol. 4, no. 2
pp. 635 – 649

Abstract

Read online

Wastewater-based epidemiology (WBE) is useful for detecting pathogen prevalence and may serve to effectively monitor diseases across broad scales. WBE has been used throughout the COVID-19 pandemic to track disease burden through quantifying SARS-CoV-2 RNA present in wastewater. Aside from case load estimation, WBE is being used to assay viral genomic diversity and emerging potential SARS-CoV-2 variants. Here, we present a study in which we sequenced RNA extracted from sewage influent obtained from eight wastewater treatment plants representing 16 million people in Southern California from April 2020 to August 2021. We sequenced SARS-CoV-2 with two methods: Illumina Respiratory Virus-Enriched metatranscriptomic sequencing (N = 269), and QIAseq SARS-CoV-2-tiled amplicon sequencing (N = 95). We classified SARS-CoV-2 reads into lineages and sublineages that approximated named variants and identified single nucleotide variants (SNVs), of which many are putatively novel SNVs and SNVs of unknown potential function and prevalence. Through our retrospective study, we also show that several SARS-CoV-2 sublineages were detected in wastewater before clinical detection, which may assist in the prediction of future variants of concern. Lastly, we show that sublineage diversity was similar across Southern California and that diversity changed over time, indicating that WBE is effective across megaregions. As the COVID-19 pandemic moves to new phases, and SARS-CoV-2 variants emerge, monitoring wastewater is important to understand local- and population-level dynamics of the virus. These results will aid in our ability to monitor the evolutionary potential of SARS-CoV-2 and help understand circulating SNVs to further combat COVID-19.

Keywords