IEEE Transactions on Neural Systems and Rehabilitation Engineering (Jan 2024)

A Systematic Review on Rigid Exoskeleton Robot Design for Wearing Comfort: Joint Self-Alignment, Attachment Interface, and Structure Customization

  • Longbao Chen,
  • Ding Zhou,
  • Yuquan Leng

DOI
https://doi.org/10.1109/TNSRE.2024.3479283
Journal volume & issue
Vol. 32
pp. 3815 – 3827

Abstract

Read online

Exoskeleton robots enable individuals with impaired physical functions to perform daily activities and maintain independence. However, the discomfort experienced by users when using these devices may limit the application scope of exoskeleton robots. Therefore, this paper systematically defines and analyzes the key design factors affecting the wearing comfort of rigid exoskeleton robots by differentiating and discussing the characteristics of traditional exoskeleton robots and exoskeleton robots equipped with the self-alignment mechanism based on addressing misalignment issues. Furthermore, the various structural configurations of the Physical Human-Robot Attachment Interface (PHRAI) and related quantitative evaluation indicators are explored in depth, and the advantages and limitations of structural customized design methods combining parametric design, Three-Dimensional (3D) scanning, and 3D printing technology are evaluated. Finally, the current concerns in the research field and potential solution strategies are proposed, aiming to provide directional guidance to optimize future exoskeleton robots. The research findings are of significant value for enhancing the comfort of wearing exoskeleton robots and provide valuable theoretical and practical references for future research.

Keywords