Knowledge and Management of Aquatic Ecosystems (Jan 2016)

The impact of wildfire on stream fishes in an Atlantic-Mediterranean climate: evidence from an 18-year chronosequence

  • Monaghan K.A.,
  • Machado A.L.,
  • Wrona F.J.,
  • Soares A.M.V.M.

DOI
https://doi.org/10.1051/kmae/2016015
Journal volume & issue
Vol. 0, no. 417
p. 28

Abstract

Read online

The predicted increase in wildfires associated with climate change poses a risk to freshwater biodiversity that may be exacerbated by river regulation. We studied the effects of wildfire and river management on the fish assemblages of Atlantic-Mediterranean streams in northern Portugal. Employing a chronosquence survey covering an 18-year gradient of impact-recovery from major fire events (ca. 100% catchment burnt), we assessed the ecological response with respect to time since wildfire, interpreting fish assemblages in the context of species traits and characteristics of the river habitat. Non-burnt sites (N = 18; surveyed 4 years previously) were compared to burnt sites (N = 14), two of which were part of the non-burnt set, thus providing a Before-After Impact comparison (BAI; N = 2). Across burnt sites richness and abundance were not related to time since wildfire. BAI revealed a contrast in the response of different species that corresponded to descriptive evidence from the chronosequence of burnt sites. As resource specialists, Salmo trutta were negatively impacted by wildfire; Iberian endemic cyprinids, characterized by generalist traits, demonstrated resistance. Habitat structure was a key determinant of wildfire-impact, increasing with channel slope and the degree of channelization. The low abundance of migratory taxa (S. trutta and Anguilla anguilla) at burnt sites suggested the importance of fish mobility to post-fire recovery. These data demonstrate that trait profiles and habitat descriptions provide pragmatic information for the management of rivers in fire-susceptible regions and suggest that the rehabilitation of these upland stream habitats might enhance ecological resistance and resilience to catchment wildfire.

Keywords