BMC Genomics (Nov 2021)
Optimization of library preparation based on SMART for ultralow RNA-seq in mice brain tissues
Abstract
Abstract Background Single-cell RNA sequencing (scRNA-seq) provides new insights to address biological and medical questions, and it will benefit more from the ultralow input RNA or subcellular sequencing. Results Here, we present a highly sensitive library construction protocol for ultralow input RNA sequencing (ulRNA-seq). We systematically evaluate experimental conditions of this protocol, such as reverse transcriptase, template-switching oligos (TSO), and template RNA structure. It was found that Maxima H Minus reverse transcriptase and rN modified TSO, as well as all RNA templates capped with m7G improved the sequencing sensitivity and low abundance gene detection ability. RNA-seq libraries were successfully prepared from total RNA samples as low as 0.5 pg, and more than 2000 genes have been identified. Conclusions The ability of low abundance gene detection and sensitivity were largely enhanced with this optimized protocol. It was also confirmed in single-cell sequencing, that more genes and cell markers were identified compared to conventional sequencing method. We expect that ulRNA-seq will sequence and transcriptome characterization for the subcellular of disease tissue, to find the corresponding treatment plan.
Keywords