Atmospheric Chemistry and Physics (Aug 2024)
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Abstract
An enhanced formation of brown carbon (BrC) with a non-negligible warming effect at the tropopause has recently been found. However, its formation mechanism is unclear. Here, we report on a BrC formation process that happens during air mass upward transport by conducting simultaneous measurements on atmospheric BrC with a 4 h time resolution at the mountain foot (MF, 400 m a.s.l.) and mountainside (MS, 1120 m a.s.l.) of Mt. Hua, China, in the 2016 summer. Our results showed that the daytime light absorption (abs365 nm) of BrC on the MS is approximately 60 % lower than that at the MF due to a dilution effect caused by the planetary boundary layer expansion, but the daytime light absorption of BrC relative to black carbon on the MS is about 30 % higher than that at the MF, suggesting a significant formation of secondary BrC in the lifting process of air mass from the MF to the MS. Such a secondary formation accounted for > 50 % of BrC on the MS but only 27 % of BrC at the MF. Moreover, the N:C elemental ratio of the daytime BrC was 15 % higher on the MS than that at the MF, mainly due to an aerosol aqueous-phase formation of water-soluble organic nitrogen (WSON) compounds. Stable nitrogen isotope composition further indicated that such light-absorbing WSON compounds were produced from the aerosol aqueous-phase reaction of carbonyls with NH4+. Our work revealed, for the first time, that ammonia-induced aerosol aqueous reactions can significantly promote BrC formation during the air mass lifting process, which is probably responsible for an enhanced light absorption of BrC in the upper boundary layer.