iScience (Feb 2022)

Ultrafast spectroscopy studies of carrier dynamics in semiconductor nanocrystals

  • Joseph D. Keene,
  • Nathaniel J. Freymeyer,
  • James R. McBride,
  • Sandra J. Rosenthal

Journal volume & issue
Vol. 25, no. 2
p. 103831

Abstract

Read online

Summary: Semiconductor nanocrystals have become ubiquitous both in scientific research and in applied technologies related to light. When a nanocrystal absorbs a photon an electron-hole pair is created whose fate dictates whether the nanocrystal will be suitable for a particular application. Ultrafast spectroscopy provides a real-time window to monitor the evolution of the electron-hole pair. In this review, we focus on CdSe nanocrystals, the most-studied nanocrystal system to date, and also highlight ultrasmall nanocrystals, “standard nanocrystals” of different binary composition, alloyed nanocrystals, and core/shell nanocrystals and nanorods. We focus on four time-resolved spectroscopies used to interrogate nanocrystals: pump-probe, fluorescence upconversion, time-correlated single photon counting, and non-linear spectroscopies. The basics of the nanocrystals and the spectroscopies are presented, followed by a detailed synopsis of ultrafast spectroscopy studies performed on the various semiconductor nanocrystal systems.

Keywords