Sensors (Aug 2019)

Multi-Sensor Fusion Approach for Improving Map-Based Indoor Pedestrian Localization

  • Hsiang-Yun Huang,
  • Chia-Yeh Hsieh,
  • Kai-Chun Liu,
  • Hui-Chun Cheng,
  • Steen J. Hsu,
  • Chia-Tai Chan

DOI
https://doi.org/10.3390/s19173786
Journal volume & issue
Vol. 19, no. 17
p. 3786

Abstract

Read online

The interior space of large-scale buildings, such as hospitals, with a variety of departments, is so complicated that people may easily lose their way while visiting. Difficulties in wayfinding can cause stress, anxiety, frustration and safety issues to patients and families. An indoor navigation system including route planning and localization is utilized to guide people from one place to another. The localization of moving subjects is a critical-function component in an indoor navigation system. Pedestrian dead reckoning (PDR) is a technology that is widely employed for localization due to the advantage of being independent of infrastructure. To improve the accuracy of the localization system, combining different technologies is one of the solutions. In this study, a multi-sensor fusion approach is proposed to improve the accuracy of the PDR system by utilizing a light sensor, Bluetooth and map information. These simple mechanisms are applied to deal with the issue of accumulative error by identifying edge and sub-edge information from both Bluetooth and the light sensor. Overall, the accumulative error of the proposed multi-sensor fusion approach is below 65 cm in different cases of light arrangement. Compared to inertial sensor-based PDR system, the proposed multi-sensor fusion approach can improve 90% of the localization accuracy in an environment with an appropriate density of ceiling-mounted lamps. The results demonstrate that the proposed approach can improve the localization accuracy by utilizing multi-sensor data and fulfill the feasibility requirements of localization in an indoor navigation system.

Keywords