Современные информационные технологии и IT-образование (Jun 2023)

Метрики оценки качества числовых параметров динамических систем

  • Жгун, Т.В.

DOI
https://doi.org/10.25559/SITITO.019.202302.393-402
Journal volume & issue
Vol. 19, no. 2
pp. 393 – 402

Abstract

Read online

Проблема неопределенности качества входных данных, описывающих систему, является одной из наиболее существенных проблем при построении систем управления сложными объектами. Еще более остро такая проблема стоит при управлении слабо формализованными (мягкими) системами. Критически важным компонентом управления качеством данных является разработка метрик, информирующих потребителей о характеристиках качества, которые наиболее важны для оценки степени пригодности данных к использованию. В статье предлагаются такие параметры для измерения качества данных, как точность данных, которая определяется как совпадение характеристики набора данных с неискаженными характеристиками реального объекта, и достоверность данных, которая определяется как несовпадение характеристики набора данных с характеристиками объекта, все регистрируемые параметры абсолютно случайны. Приводятся формулы для определения мер этих параметров качества, использующие аппарат конечных разностей. Предлагаемая методика предоставляет достаточно формализованный и вычислительно несложный алгоритм оценки качества совокупности входных параметров слабо формализованной динамической системы. Предлагаемые оценки являются эффективными метриками качества, анализ которых позволяет инициировать алгоритм управления, выделяющий полезный сигнал из зашумленного потока данных. Предлагаемая методика применена для анализа совокупности статистических данных, характеризующих качество жизни населения субъектов Российской Федерации за 2009–2019 годы. Анализ показывает, что значительное число рассматриваемых параметров имеет значительную ошибку регистрации и недостаточную степень достоверности. Следовательно, использование таких данных, как основы для принятия решений, без учета имеющихся искажений привносит ошибки в оценки и прогнозы и, как следствие, приводит к значительному снижению качества принимаемых управленческих решений. В частности, вычисление композитных индексов качества системы по однократному наблюдению по данным статистических измерений с помощью математических методов не предполагает устранения имеющейся шумовой компоненты данных, вследствие чего полученный результат может быть неправдоподобным.

Keywords