Тонкие химические технологии (Sep 2021)
Aqueous polyvinyl alcohol solution foaming at different molecular masses
Abstract
Objectives. Investigation of aqueous polyvinyl alcohol (PVA) foaming process and the influence of its water solution structure, when possessed of different molecular weights and concentrations, on foaming multiplicity.Methods. Solution foaming analysis was performed on the data of dynamic light scattering obtained on the Zetasizer Nano particle analyzer.Results. In this work, the foaming ability and foaming multiplicity of aqueous PVA solutions (as a main component for obtaining special-purpose foams) have been studied. It is shown that PVA solutions in water are colloidal dispersed systems consisting of different-sized associates (from 4.8 to 68.1 nm), depending on the molecular weight of PVA. Dependencies of aqueous PVA solution foaming multiplicities on the concentration, molecular weight, and solution temperature were given. Optimal values of concentration and molecular PVA weight, as well as optimal foaming process conditions from aqueous PVA solutions, were established.Conclusions. Increasing PVA concentrations in aqueous solutions cause foaming multiplicity to decrease for all molecular weights by 1.5 times, and increasing molecular weight increases foaming multiplicity by 2 times. The foaming ratio of aqueous PVA solutions with different concentrations and molecular weights (depending on a solution temperature characterized by a maximum of 30 °C) is associated with decreased viscosity and surface tension.
Keywords