Scientific Reports (Apr 2017)
Achieving unlimited recording length in interference lithography via broad-beam scanning exposure with self-referencing alignment
Abstract
Abstract Large-area holographic gratings are of great importance in diverse fields including long-range interference metrology, high-resolution astronomical telescopes, and chirped-pulse-amplification systems. However, in conventional interference lithography, the recording length is limited by the aperture of the collimating lenses. Here we propose broad-beam scanning exposure which employs the latent grating generated continuously during scanning for real-time dynamic fringe locking and thus achieves unlimited recording length. This method is experimentally proved to make high-quality gratings, and is expected to be a new type of interference lithography.