Sensors (Dec 2022)

RUC-Net: A Residual-Unet-Based Convolutional Neural Network for Pixel-Level Pavement Crack Segmentation

  • Gui Yu,
  • Juming Dong,
  • Yihang Wang,
  • Xinglin Zhou

DOI
https://doi.org/10.3390/s23010053
Journal volume & issue
Vol. 23, no. 1
p. 53

Abstract

Read online

Automatic crack detection is always a challenging task due to the inherent complex backgrounds, uneven illumination, irregular patterns, and various types of noise interference. In this paper, we proposed a U-shaped encoder–decoder semantic segmentation network combining Unet and Resnet for pixel-level pavement crack image segmentation, which is called RUC-Net. We introduced the spatial-channel squeeze and excitation (scSE) attention module to improve the detection effect and used the focal loss function to deal with the class imbalance problem in the pavement crack segmentation task. We evaluated our methods using three public datasets, CFD, Crack500, and DeepCrack, and all achieved superior results to those of FCN, Unet, and SegNet. In addition, taking the CFD dataset as an example, we performed ablation studies and compared the differences of various scSE modules and their combinations in improving the performance of crack detection.

Keywords