AIP Advances (Dec 2011)
Ambipolar organic field effect transistors and inverters with the natural material Tyrian Purple
Abstract
Ambipolar organic semiconductors enable complementary-like circuits in organic electronics. Here we show promising electron and hole transport properties in the natural pigment Tyrian Purple (6,6’-dibromoindigo). X-ray diffraction of Tyrian Purple films reveals a highly-ordered structure with a single preferential orientation, attributed to intermolecular hydrogen bonding. This material, with a band gap of ∼1.8 eV, demonstrates high hole and electron mobilities of 0.22 cm2/V·s and 0.03 cm2/V·s in transistors, respectively; and air-stable operation. Inverters with gains of 250 in the first and third quadrant show the large potential of Tyrian Purple for the development of integrated organic electronic circuits.