Advanced NanoBiomed Research (Sep 2024)

A Perspective on Ultrasound‐Triggered Production of Reactive Oxygen Species by Inorganic Nano/Microparticles

  • Yijun Han,
  • Xinyue Yu,
  • Zeinab Marfavi,
  • Yumo Chen,
  • Linxuan Zhang,
  • Jing Chu,
  • Kang Sun,
  • Mingda Li,
  • Ke Tao

DOI
https://doi.org/10.1002/anbr.202400060
Journal volume & issue
Vol. 4, no. 9
pp. n/a – n/a

Abstract

Read online

Ultrasound can activate nano/microparticles to induce reactive oxygen species (ROS). The advantages of deep penetration and precise spatiotemporal control are demonstrated for multiple applications, such as sonodynamic therapy, chemical industry, and environmental treatment. Meanwhile, a toolbox of inorganic particles is developed to enhance ROS production via cavitation enhancement, sonoluminescence, and piezocatalytic effect. Nonetheless, sophisticated influences of ultrasonic parameters hamper further exploration of novel sonosensitized materials. In this perspective, the influential parameters in different mechanisms are reviewed, emphasizing the relationship between ultrasound frequency and catalytic activity, and outlooks are provided on the study of inorganic sonosensitizers.

Keywords