Demonstratio Mathematica (Oct 2022)

Entire and meromorphic solutions for systems of the differential difference equations

  • Xu Hong Yan,
  • Li Hong,
  • Ding Xin

DOI
https://doi.org/10.1515/dema-2022-0161
Journal volume & issue
Vol. 55, no. 1
pp. 676 – 694

Abstract

Read online

With the help of the Nevanlinna theory of meromorphic functions, the purpose of this article is to describe the existence and the forms of transcendental entire and meromorphic solutions for several systems of the quadratic trinomial functional equations: f(z)2+2αf(z)g(z+c)+g(z+c)2=1,g(z)2+2αg(z)f(z+c)+f(z+c)2=1,\left\{\begin{array}{l}f{\left(z)}^{2}+2\alpha f\left(z)g\left(z+c)+g{\left(z+c)}^{2}=1,\\ g{\left(z)}^{2}+2\alpha g\left(z)f\left(z+c)+f{\left(z+c)}^{2}=1,\end{array}\right. f(z+c)2+2αf(z+c)g′(z)+g′(z)2=1,g(z+c)2+2αg(z+c)f′(z)+f′(z)2=1,\left\{\begin{array}{l}f{\left(z+c)}^{2}+2\alpha f\left(z+c)g^{\prime} \left(z)+g^{\prime} {\left(z)}^{2}=1,\\ g{\left(z+c)}^{2}+2\alpha g\left(z+c)f^{\prime} \left(z)+f^{\prime} {\left(z)}^{2}=1,\end{array}\right. and f(z+c)2+2αf(z+c)g″(z)+g″(z)2=1,g(z+c)2+2αg(z+c)f″(z)+f″(z)2=1.\left\{\begin{array}{l}f{\left(z+c)}^{2}+2\alpha f\left(z+c){g}^{^{\prime\prime} }\left(z)+{g}^{^{\prime\prime} }{\left(z)}^{2}=1,\\ g{\left(z+c)}^{2}+2\alpha g\left(z+c){f}^{^{\prime\prime} }\left(z)+{f}^{^{\prime\prime} }{\left(z)}^{2}=1.\end{array}\right. We obtain a series of results on the forms of the entire solutions with finite order for such systems, which are some improvements and generalizations of the previous theorems given by Gao et al. Moreover, we provide some examples to explain the existence and forms of solutions for such systems in each case.

Keywords