Marine Drugs (Apr 2021)

Probing the Anti-Cancer Potency of Sulfated Galactans on Cholangiocarcinoma Cells Using Synchrotron FTIR Microspectroscopy, Molecular Docking, and In Vitro Studies

  • Boonyakorn Boonsri,
  • Kiattawee Choowongkomon,
  • Buabarn Kuaprasert,
  • Thanvarin Thitiphatphuvanon,
  • Kittiya Supradit,
  • Apinya Sayinta,
  • Jinchutha Duangdara,
  • Tawut Rudtanatip,
  • Kanokpan Wongprasert

DOI
https://doi.org/10.3390/md19050258
Journal volume & issue
Vol. 19, no. 5
p. 258

Abstract

Read online

Sulfated galactans (SG) isolated from red alga Gracilaria fisheri have been reported to inhibit the growth of cholangiocarcinoma (CCA) cells, which was similar to the epidermal growth factor receptor (EGFR)-targeted drug, cetuximab. Herein, we studied the anti-cancer potency of SG compared to cetuximab. Biological studies demonstrated SG and cetuximab had similar inhibition mechanisms in CCA cells by down-regulating EGFR/ERK pathway, and the combined treatment induced a greater inhibition effect. The molecular docking study revealed that SG binds to the dimerization domain of EGFR, and this was confirmed by dimerization assay, which showed that SG inhibited ligand-induced EGFR dimer formation. Synchrotron FTIR microspectroscopy was employed to examine alterations in cellular macromolecules after drug treatment. The SR-FTIR-MS elicited similar spectral signatures of SG and cetuximab, pointing towards the bands of RNA/DNA, lipids, and amide I vibrations, which were inconsistent with the changes of signaling proteins in CCA cells after drug treatment. Thus, this study demonstrates the underlined anti-cancer mechanism of SG by interfering with EGFR dimerization. In addition, we reveal that FTIR signature spectra offer a useful tool for screening anti-cancer drugs’ effect.

Keywords