Applied Sciences (Jan 2019)
Direct Multistep Wind Speed Forecasting Using LSTM Neural Network Combining EEMD and Fuzzy Entropy
Abstract
Accurate wind speed forecasting is of great significance for a reliable and secure power generation system. In order to improve forecasting accuracy, this paper introduces the LSTM neural network and proposes a wind speed statistical forecasting method based on the EEMD-FuzzyEn-LSTMNN model. Moreover, the MIC is used to analyze the autocorrelation of wind speed series, and the predictable time of wind speed statistical forecasting method for direct multistep forecasting is taken as four hours. In the EEMD-FuzzyEn-LSTMNN model, the original wind speed series is firstly decomposed into a series of components by using EEMD. Then, the FuzzyEn is used to calculate the complexity of each component, and the components with similar FuzzyEn values are classified into one group. Finally, the LSTMNN model is used to forecast each subsequence after classification. The forecasting result of the original wind speed series is obtained by aggregating the forecasting result of each subsequence. Three forecasting cases under different terrain conditions were selected to validate the proposed model, and the BPNN model, the SVM model and the LSTMNN model were used for comparison. The experimental results show that the forecasting accuracy of the EEMD-FuzzyEn-LSTMNN model is much higher than that of the other three models.
Keywords