Remote Sensing (Feb 2021)

New Understanding of Bar Top Hollows in Dryland Sandy Braided Rivers from Outcrops with Unmanned Aerial Vehicle and Ground Penetrating Radar Surveys

  • Xianguo Zhang,
  • Chengyan Lin,
  • Tao Zhang,
  • Daowu Huang,
  • Derong Huang,
  • Shanwei Liu

DOI
https://doi.org/10.3390/rs13040560
Journal volume & issue
Vol. 13, no. 4
p. 560

Abstract

Read online

Bar top hollows (BTHs) are morphological elements recognized in modern braided rivers; however, information regarding their depositional features and types of filling units in ancient strata is unclear. This is an important reason behind why it is difficult to identify BTH units in subsurface reservoirs. A Middle Jurassic dryland sandy braided river outcrop in northwestern China is characterized in this study through the application of an unmanned aerial vehicle (UAV) surveying and mapping, and ground penetrating radar (GPR). A workflow of UAV data processing has been established, and a 3D digital outcrop model has been built. By observation and measurement of the outcrop model and GPR profiles, two types of BTH filled units were found: (a) sandstone-filled, and (b) mudstone-filled hollows. Both of these units were located between two adjacent bar units in an area that is limited to a compound bar, and were developed in the upper part of a braided bar depositional sequence. The ellipse-shaped, sandstone-filled unit measures 10 m × 27 m in map view and reaches a maximum thickness of 5 m. The transversal cross-section across the BTHs displays a concave upward basal surface, while the angle of the inclined structures infilling the BTHs decreases up-section. The GPR data show that, in the longitudinal profile, the basal surface is relatively flat, and low-angle, inclined layers can be observed in the lower- and middle part of the sandstone-filled BTHs. In contrast, no obvious depositional structures were observed in the mudstone-filled BTH in outcrop. The new understanding of BTH has a wide application, including the optimization of CO2 storage sites, fresh water aquifers exploration, and oil and gas reservoir characterization.

Keywords