PLoS ONE (Jan 2020)
Transfer entropy as a variable selection methodology of cryptocurrencies in the framework of a high dimensional predictive model.
Abstract
We determine the number of statistically significant factors in a high dimensional predictive model of cryptocurrencies using a random matrix test. The applied predictive model is of the reduced rank regression (RRR) type; in particular, we choose a flavor that can be regarded as canonical correlation analysis (CCA). A variable selection of hourly cryptocurrencies is performed using the Symbolic estimation of Transfer Entropy (STE) measure from information theory. In simulated studies, STE shows better performance compared to the Granger causality approach when considering a nonlinear system and a linear system with many drivers. In the application to cryptocurrencies, the directed graph associated to the variable selection shows a robust pattern of predictor and response clusters, where the community detection was contrasted with the modularity approach. Also, the centralities of the network discriminate between the two main types of cryptocurrencies, i.e., coins and tokens. On the factor determination of the predictive model, the result supports retaining more factors contrary to the usual visual inspection, with the additional advantage that the subjective element is avoided. In particular, it is observed that the dynamic behavior of the number of factors is moderately anticorrelated with the dynamics of the constructed composite index of predictor and response cryptocurrencies. This finding opens up new insights for anticipating possible declines in cryptocurrency prices on exchanges. Furthermore, our study suggests the existence of specific-predictor and specific-response factors, where only a small number of currencies are predominant.