Miskolc Mathematical Notes (Jan 2024)
A Legendre wavelet collocation method for solving neutral delay differential equations
Abstract
The Legendre wavelet based method has been employed in this paper to investigate neutral delay differential equations. The highest order derivative is approximated by Legendre wavelet using the integral operator technique. Then integrations of Legendre wavelet are used to approximate the lower order derivatives and unknown function. To get an algebraic system of linear or nonlinear equations, approximated values of unknown function and its derivatives are substituted in neutral delay differential equations. On solving the developed system, we get unknown wavelet coefficients and subsequently the approximate solution. To analyze the theoretical usability of the approach, the upper bound of error norm is established. Moreover, the theoretical results are confirmed through few numerical experiments. A comparison of the results of presented method with method available in literature is given to conclude the superiority of the proposed method.