Journal of Electronic Science and Technology (Dec 2021)
Impact of fiber dispersion on the performance of entanglement-based dispersive optics quantum key distribution
Abstract
Dispersive optics quantum key distribution (DO-QKD) based on energy-time entangled photon pairs is an important QKD scheme. In DO-QKD, the arrival time of photons is used in key generation and security analysis, which would be greatly affected by fiber dispersion. In this work, we established a theoretical model of the entanglement-based DO-QKD system, considering the protocol, physical processes (such as fiber transmission and single-photon detection), and the analysis of security tests. Based on this theoretical model, we investigate the influence of chromatic dispersion introduced by transmission fibers on the performance of DO-QKD. By analyzing the benefits and costs of dispersion compensation, the system performance under G.652 and G.655 optical fibers are shown, respectively. The results show that dispersion compensation is unnecessary for DO-QKD systems in campus networks and even metro networks. Whereas, it is still required in DO-QKD systems with longer fiber transmission distances.