Mathematical Biosciences and Engineering (Jun 2019)

Patient-specific parameter estimates of glioblastoma multiforme growth dynamics from a model with explicit birth and death rates

  • Lifeng Han,
  • Steffen Eikenberry,
  • Changhan He,
  • Lauren Johnson,
  • Mark C. Preul ,
  • Eric J. Kostelich,
  • Yang Kuang

DOI
https://doi.org/10.3934/mbe.2019265
Journal volume & issue
Vol. 16, no. 5
pp. 5307 – 5323

Abstract

Read online

Glioblastoma multiforme (GBM) is an aggressive primary brain cancer with a grim prognosis. Its morphology is heterogeneous, but prototypically consists of an inner, largely necrotic core surrounded by an outer, contrast-enhancing rim, and often extensive tumor-associated edema beyond. This structure is usually demonstrated by magnetic resonance imaging (MRI). To help relate the three highly idealized components of GBMs (i.e., necrotic core, enhancing rim, and maximum edema extent) to the underlying growth "laws, " a mathematical model of GBM growth with explicit motility, birth, and death processes is proposed. This model generates a traveling-wave solution that mimics tumor progression. We develop several novel methods to approximate key characteristics of the wave profile, which can be compared with MRI data. Several simplified forms of growth and death terms and their parameter identifiability are studied. We use several test cases of MRI data of GBM patients to yield personalized parameterizations of the model, and the biological and clinical implications are discussed.

Keywords