Molecules (Feb 2018)
Exploring the Metabolism of (+)-[18F]Flubatine In Vitro and In Vivo: LC-MS/MS Aided Identification of Radiometabolites in a Clinical PET Study †
Abstract
Both (+)-[18F]flubatine and its enantiomer (−)-[18F]flubatine are radioligands for the neuroimaging of α4β2 nicotinic acetylcholine receptors (nAChRs) by positron emission tomography (PET). In a clinical study in patients with early Alzheimer’s disease, (+)-[18F]flubatine ((+)-[18F]1) was examined regarding its metabolic fate, in particular by identification of degradation products detected in plasma and urine. The investigations included an in vivo study of (+)-flubatine ((+)-1) in pigs and structural elucidation of formed metabolites by LC-MS/MS. Incubations of (+)-1 and (+)-[18F]1 with human liver microsomes were performed to generate in vitro metabolites, as well as radiometabolites, which enabled an assignment of their structures by comparison of LC-MS/MS and radio-HPLC data. Plasma and urine samples taken after administration of (+)-[18F]1 in humans were examined by radio-HPLC and, on the basis of results obtained in vitro and in vivo, formed radiometabolites were identified. In pigs, (+)-1 was monohydroxylated at different sites of the azabicyclic ring system of the molecule. Additionally, one intermediate metabolite underwent glucuronidation, as also demonstrated in vitro. In humans, a fraction of 95.9 ± 1.9% (n = 10) of unchanged tracer remained in plasma, 30 min after injection. However, despite the low metabolic degradation, both radiometabolites formed in humans could be characterized as (i) a product of C-hydroxylation at the azabicyclic ring system, and (ii) a glucuronide conjugate of the precedingly-formed N8-hydroxylated (+)-[18F]1.
Keywords