Journal of High Energy Physics (Dec 2023)

Flat from anti de Sitter

  • Andrea Campoleoni,
  • Arnaud Delfante,
  • Simon Pekar,
  • P. Marios Petropoulos,
  • David Rivera-Betancour,
  • Matthieu Vilatte

DOI
https://doi.org/10.1007/JHEP12(2023)078
Journal volume & issue
Vol. 2023, no. 12
pp. 1 – 46

Abstract

Read online

Abstract Ricci-flat solutions to Einstein’s equations in four dimensions are obtained as the flat limit of Einstein spacetimes with negative cosmological constant. In the limiting process, the anti-de Sitter energy-momentum tensor is expanded in Laurent series in powers of the cosmological constant, endowing the system with the infinite number of boundary data, characteristic of an asymptotically flat solution space. The governing flat Einstein dynamics is recovered as the limit of the original energy-momentum conservation law and from the additional requirement of the line-element finiteness, providing at each order the necessary set of flux-balance equations for the boundary data. This analysis is conducted using a covariant version of the Newman-Unti gauge designed for taking advantage of the boundary Carrollian structure emerging at vanishing cosmological constant and its Carrollian attributes such as the Cotton tensor.

Keywords