Heliyon (Feb 2024)

Selective laser melting of low-alloyed titanium based alloy with a large solidification range

  • V.A. Bautin,
  • V. Yu Zadorozhnyy,
  • A.A. Korol,
  • V.E. Bazhenov,
  • A.S. Shinkarev,
  • S.V. Chernyshikhin,
  • D.O. Moskovskikh,
  • M.E. Samoshina,
  • A. Khort

Journal volume & issue
Vol. 10, no. 3
p. e25513

Abstract

Read online

In this work, thermodynamic calculations for α + β Type Ti–Fe–Cu–Sn alloy were carried out by the Thermo-Calc software. Powders from this alloy were obtained by plasma sputtering and used for subsequent 3D printing of experimental samples. The effect of various selective laser melting (SLM) parameters on porosity and hot cracking susceptibility as well as the electrochemical characteristics of the alloy have been studied. The optimal technological regime for the manufacture of samples by the SLM method was determined. It has been established that to obtain relatively dense samples without cracks, regimes with volumetric energy density Ev = 250–300 J/mm3 are required. It has been established that a change in the electrochemical behavior of the Ti94Fe1Cu1Sn4 alloy is related to the formation of a nonequilibrium Ti2Cu phase. Based on the findings we recomended directions for further research.

Keywords