Nature Communications (Jul 2023)
Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density
- Martin Rehwald,
- Stefan Assenbaum,
- Constantin Bernert,
- Florian-Emanuel Brack,
- Michael Bussmann,
- Thomas E. Cowan,
- Chandra B. Curry,
- Frederico Fiuza,
- Marco Garten,
- Lennart Gaus,
- Maxence Gauthier,
- Sebastian Göde,
- Ilja Göthel,
- Siegfried H. Glenzer,
- Lingen Huang,
- Axel Huebl,
- Jongjin B. Kim,
- Thomas Kluge,
- Stephan Kraft,
- Florian Kroll,
- Josefine Metzkes-Ng,
- Thomas Miethlinger,
- Markus Loeser,
- Lieselotte Obst-Huebl,
- Marvin Reimold,
- Hans-Peter Schlenvoigt,
- Christopher Schoenwaelder,
- Ulrich Schramm,
- Mathias Siebold,
- Franziska Treffert,
- Long Yang,
- Tim Ziegler,
- Karl Zeil
Affiliations
- Martin Rehwald
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Stefan Assenbaum
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Constantin Bernert
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Michael Bussmann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Thomas E. Cowan
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Chandra B. Curry
- High Energy Density Science Division, SLAC National Accelerator Laboratory
- Frederico Fiuza
- High Energy Density Science Division, SLAC National Accelerator Laboratory
- Marco Garten
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Lennart Gaus
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Maxence Gauthier
- High Energy Density Science Division, SLAC National Accelerator Laboratory
- Sebastian Göde
- European XFEL GmbH
- Ilja Göthel
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Siegfried H. Glenzer
- High Energy Density Science Division, SLAC National Accelerator Laboratory
- Lingen Huang
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Axel Huebl
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Jongjin B. Kim
- High Energy Density Science Division, SLAC National Accelerator Laboratory
- Thomas Kluge
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Stephan Kraft
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Florian Kroll
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Josefine Metzkes-Ng
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Thomas Miethlinger
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Markus Loeser
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Lieselotte Obst-Huebl
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Marvin Reimold
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Hans-Peter Schlenvoigt
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Christopher Schoenwaelder
- High Energy Density Science Division, SLAC National Accelerator Laboratory
- Ulrich Schramm
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Mathias Siebold
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Franziska Treffert
- High Energy Density Science Division, SLAC National Accelerator Laboratory
- Long Yang
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Tim Ziegler
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- Karl Zeil
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
- DOI
- https://doi.org/10.1038/s41467-023-39739-0
- Journal volume & issue
-
Vol. 14,
no. 1
pp. 1 – 11
Abstract
Abstract Laser plasma-based particle accelerators attract great interest in fields where conventional accelerators reach limits based on size, cost or beam parameters. Despite the fact that particle in cell simulations have predicted several advantageous ion acceleration schemes, laser accelerators have not yet reached their full potential in producing simultaneous high-radiation doses at high particle energies. The most stringent limitation is the lack of a suitable high-repetition rate target that also provides a high degree of control of the plasma conditions required to access these advanced regimes. Here, we demonstrate that the interaction of petawatt-class laser pulses with a pre-formed micrometer-sized cryogenic hydrogen jet plasma overcomes these limitations enabling tailored density scans from the solid to the underdense regime. Our proof-of-concept experiment demonstrates that the near-critical plasma density profile produces proton energies of up to 80 MeV. Based on hydrodynamic and three-dimensional particle in cell simulations, transition between different acceleration schemes are shown, suggesting enhanced proton acceleration at the relativistic transparency front for the optimal case.