MATEC Web of Conferences (Jan 2018)

Sloshing response of partially filled rectangular tank under periodic horizontal ground motion.

  • Pandit Amiya,
  • Chandra Biswal Kishore

DOI
https://doi.org/10.1051/matecconf/201817201005
Journal volume & issue
Vol. 172
p. 01005

Abstract

Read online

The event caused due to the movement of the unrestricted free surface liquid in container due to any external excitation is known as sloshing. The problem of liquid sloshing phenomenon in stationary or in moving container is a great matter of concern for many researchers and engineers. The containers may range from a cup of milk, ponds, and lakes to fuel tanks of launching vehicles and cargo ships carrying variety of liquids such as oil, liquefied natural gas, and chemical fluids. As a result of sloshing there is spillage of liquid from the containers and it causes structural instability and structural damage. Due to these reasons, liquid retaining structures which are special in construction and in function from an engineering point of view must be constructed well to be resistant against oscillation of the liquid due to external excitations. The amount of liquid participating in the sloshing motion depends on the shape of tank, the liquid depth, internal objects, if any, orientation, duration, amplitude, and frequency contents of external excitations. This present study focuses on the forced vibration analysis of partially filled two-dimensional rigid rectangular tank numerically. A Finite element (FE) code in two dimensions is developed to understand the behavior of sloshing. This method is competent enough of evaluating both impulsive and convective response of tank-liquid system in terms of base shear and hydrodynamic pressure distribution along the walls of the containers.