Scientific Reports (Apr 2024)
TDF and TAF inhibit liver cancer cell migration, invasion via p7TP3
Abstract
Abstract Tenofovir disoproxil fumarate (TDF) seems to prevent hepatocellular carcinoma (HCC) in patients with chronic hepatitis B virus (HBV). However, the mechanism is still little known. This study aimed to investigate the the roles and mechanisms of TDF, tenofovir alafenamide fumarate (TAF), and entecavir (ETV) on the malignant characteristics of liver cancer cells. Using the wound-healing assays, transwell assays, matrigel transwell assays, and cell counting kit-8 (CCK-8) assays, it was possible to identify that TDF/TAF, inhibited migration, invasion, and proliferation of HepG2 cells and Huh7 cells. To investigate the mechanisms, we performed TOP/FOP-Flash system, Western blot, and RT-qPCR assays of liver cancer cells cultured with TDF/TAF and found a lower activity of Wnt/β-catenin signaling pathway compared with control cells. Finally, Hepatitis C virus p7 trans-regulated protein 3 (p7TP3), a tumor suppressor in liver cancers, was significantly increased in HepG2 cells and Huh7 cells that treated with TDF/TAF. However, entecavir (ETV)-treated liver cancer cells showed no significant difference in the malignant characteristics of liver cancer cells, activity of Wnt/β-catenin signaling pathway, and expression of p7TP3, compared with the control groups. To conclude, TDF/TAF maybe novel promising therapeutic strategy for liver cancers, including HCC and hepatoblastoma, via Wnt/β-catenin signaling pathway, by up-regulating expression of the tumor suppressor, p7TP3.
Keywords