Vaccines (Mar 2023)

A COVID-19 DNA Vaccine Candidate Elicits Broadly Neutralizing Antibodies against Multiple SARS-CoV-2 Variants including the Currently Circulating Omicron BA.5, BF.7, BQ.1 and XBB

  • Yuan Ding,
  • Feng Fan,
  • Xin Xu,
  • Gan Zhao,
  • Xin Zhang,
  • Huiyun Zhao,
  • Limei Wang,
  • Bin Wang,
  • Xiao-Ming Gao

DOI
https://doi.org/10.3390/vaccines11040778
Journal volume & issue
Vol. 11, no. 4
p. 778

Abstract

Read online

Waves of breakthrough infections by SARS-CoV-2 Omicron subvariants currently pose a global challenge to the control of the COVID-19 pandemic. We previously reported a pVAX1-based DNA vaccine candidate, pAD1002, that encodes a receptor-binding domain (RBD) chimera of SARS-CoV-1 and Omicron BA.1. In mouse and rabbit models, pAD1002 plasmid induced cross-neutralizing Abs against heterologous sarbecoviruses, including SARS-CoV-1 and SARS-CoV-2 wildtype, Delta and Omicron variants. However, these antisera failed to block the recent emerging Omicron subvariants BF.7 and BQ.1. To solve this problem, we replaced the BA.1 RBD-encoding DNA sequence in pAD1002 with that of BA.4/5. The resulting construct, namely pAD1016, elicited SARS-CoV-1 and SARS-CoV-2 RBD-specific IFN-γ+ cellular responses in BALB/c and C57BL/6 mice. More importantly, pAD1016 vaccination in mice, rabbits and pigs generated serum Abs capable of neutralizing pseudoviruses representing multiple SARS-CoV-2 Omicron subvariants including BA.2, BA.4/5, BF.7, BQ.1 and XBB. As a booster vaccine for inactivated SARS-CoV-2 virus preimmunization in mice, pAD1016 broadened the serum Ab neutralization spectrum to cover the Omicron BA.4/5, BF7 and BQ.1 subvariants. These preliminary data highlight the potential benefit of pAD1016 in eliciting neutralizing Abs against broad-spectrum Omicron subvariants in individuals previously vaccinated with inactivated prototype SARS-CoV-2 virus and suggests that pAD1016 is worthy of further translational study as a COVID-19 vaccine candidate.

Keywords