Nanophotonics (Sep 2021)

Near-field optical imaging and spectroscopy of 2D-TMDs

  • Kim Youngbum,
  • Kim Jeongyong

DOI
https://doi.org/10.1515/nanoph-2021-0383
Journal volume & issue
Vol. 10, no. 13
pp. 3397 – 3415

Abstract

Read online

Two-dimensional transition metal dichalcogenides (2D-TMDs) are atomically thin semiconductors with a direct bandgap in monolayer thickness, providing ideal platforms for the development of exciton-based optoelectronic devices. Extensive studies on the spectral characteristics of exciton emission have been performed, but spatially resolved optical studies of 2D-TMDs are also critically important because of large variations in the spatial profiles of exciton emissions due to local defects and charge distributions that are intrinsically nonuniform. Because the spatial resolution of conventional optical microscopy and spectroscopy is fundamentally limited by diffraction, near-field optical imaging using apertured or metallic probes has been used to spectrally map the nanoscale profiles of exciton emissions and to study the effects of nanosize local defects and carrier distribution. While these unique approaches have been frequently used, revealing information on the exciton dynamics of 2D-TMDs that is not normally accessible by conventional far-field spectroscopy, a dedicated review of near-field imaging and spectroscopy studies on 2D-TMDs is not available. This review is intended to provide an overview of the current status of near-field optical research on 2D-TMDs and the future direction with regard to developing nanoscale optical imaging and spectroscopy to investigate the exciton characteristics of 2D-TMDs.

Keywords