Geoscientific Model Development (Apr 2022)

Improved runoff simulations for a highly varying soil depth and complex terrain watershed in the Loess Plateau with the Community Land Model version 5

  • J. Jin,
  • J. Jin,
  • L. Wang,
  • L. Wang,
  • J. Yang,
  • J. Yang,
  • B. Si,
  • G.-Y. Niu,
  • G.-Y. Niu

DOI
https://doi.org/10.5194/gmd-15-3405-2022
Journal volume & issue
Vol. 15
pp. 3405 – 3416

Abstract

Read online

This study aimed to improve runoff simulations and explore deep soil hydrological processes for a watershed in the center of the Loess Plateau (LP), China. This watershed, the Wuding River Basin (WRB), has very complex topography, with soil depths ranging from 0 to 197 m. The hydrological model used for our simulations was Community Land Model version 5 (CLM5) developed by the National Center for Atmospheric Research. Actual soil depths and river channels were incorporated into CLM5 to realistically represent the physical features of the WRB. Through sensitivity tests, CLM5 with 150 soil layers with the observed variable soil depths produced the most reasonable results and was adopted for this study. Our results showed that CLM5 with actual soil depths significantly suppressed unrealistic variations of the simulated subsurface runoff when compared to the default simulations. In addition, when compared with the default version with 20 soil layers, CLM5 with 150 soil layers slightly improved runoff simulations but generated simulations with much smoother vertical water flows that were consistent with the uniform distribution of soil textures in our study watershed. The runoff simulations were further improved by the addition of river channels to CLM5, where the seasonal variability of the simulated runoff was reasonably captured. Moreover, the magnitude of the simulated runoff remarkably decreased with increased soil evaporation by lowering the soil water content threshold, which triggers surface resistance. The lowered threshold was consistent with the loess soil, which has a high sand component. Such soils often generate stronger soil evaporation than soils dominated by clay. Finally, with the above changes in CLM5, the simulated total runoff matched very closely with observations. When compared with those for the default runoff simulations, the correlation coefficient, root mean square error, and Nash–Sutcliffe coefficient for the improved simulations changed dramatically from 0.02, 10.37 mm, and −12.34 to 0.62, 1.8 mm, and 0.61. The results in this study provide strong physical insight for further investigation of hydrological processes in complex terrain with deep soils.