Journal of Translational Medicine (Mar 2020)

Improving accuracy of estimating glomerular filtration rate using artificial neural network: model development and validation

  • Ningshan Li,
  • Hui Huang,
  • Han-Zhu Qian,
  • Peijia Liu,
  • Hui Lu,
  • Xun Liu

DOI
https://doi.org/10.1186/s12967-020-02287-y
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background The performance of previously published glomerular filtration rate (GFR) estimation equations degrades when directly used in Chinese population. We incorporated more independent variables and using complicated non-linear modeling technology (artificial neural network, ANN) to develop a more accurate GFR estimation model for Chinese population. Methods The enrolled participants came from the Third Affiliated Hospital of Sun Yat-sen University, China from Jan 2012 to Jun 2016. Participants with age < 18, unstable kidney function, taking trimethoprim or cimetidine, or receiving dialysis were excluded. Among the finally enrolled 1952 participants, 1075 participants (55.07%) from Jan 2012 to Dec 2014 were assigned as the development data whereas 877 participants (44.93%) from Jan 2015 to Jun 2016 as the internal validation data. We in total developed 3 GFR estimation models: a 4-variable revised CKD-EPI (chronic kidney disease epidemiology collaboration) equation (standardized serum creatinine and cystatin C, age and gender), a 9-variable revised CKD-EPI equation (additional auxiliary variables: body mass index, blood urea nitrogen, albumin, uric acid and hemoglobin), and a 9-variable ANN model. Results Compared with the 4-variable equation, the 9-variable equation could not achieve superior performance in the internal validation data (mean of difference: 5.00 [3.82, 6.54] vs 4.67 [3.55, 5.90], P = 0.5; interquartile range (IQR) of difference: 18.91 [17.43, 20.48] vs 20.11 [18.46, 21.80], P = 0.05; P30: 76.6% [73.7%, 79.5%] vs 75.8% [72.9%, 78.6%], P = 0.4), but the 9-variable ANN model significantly improve bias and P30 accuracy (mean of difference: 2.77 [1.82, 4.10], P = 0.007; IQR: 19.33 [17.77, 21.17], P = 0.3; P30: 80.0% [77.4%, 82.7%], P < 0.001). Conclusions It is suggested that using complicated non-linear models like ANN could fully utilize the predictive ability of the independent variables, and then finally achieve a superior GFR estimation model.

Keywords