Fractal and Fractional (Mar 2021)
On Strongly Continuous Resolving Families of Operators for Fractional Distributed Order Equations
Abstract
The aim of this work is to find by the methods of the Laplace transform the conditions for the existence of a strongly continuous resolving family of operators for a linear homogeneous equation in a Banach space with the distributed Gerasimov–Caputo fractional derivative and with a closed densely defined operator A in the right-hand side. It is proved that the existence of a resolving family of operators for such equation implies the belonging of the operator A to the class CW(K,a), which is defined here. It is also shown that from the continuity of a resolving family of operators at t=0 the boundedness of A follows. The existence of a resolving family is shown for A∈CW(K,a) and for the upper limit of the integration in the distributed derivative not greater than 2. As corollary, we obtain the existence of a unique solution for the Cauchy problem to the equation of such class. These results are used for the investigation of the initial boundary value problems unique solvability for a class of partial differential equations of the distributed order with respect to time.
Keywords