Opto-Electronic Advances (Jan 2024)
Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
Abstract
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares. However, the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited. Herein, we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal (LC) holograms. The LC holograms are used as spatially separated shares to carry secret images. The polarization of the incident light and the distance between different shares are served as secret keys, which can significantly improve the information security and capacity. Besides, the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency, which further increases the information security. In implementation, an artificial neural network (ANN) model is developed to carefully design the phase distribution of each LC hologram. With the advantage of high security, high capacity and simple configuration, our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
Keywords