Research (Jan 2023)

Multimaterial Embedded 3D Printing of Composite Reinforced Soft Actuators

  • Zhenhua Wang,
  • Boyu Zhang,
  • Qu He,
  • Hao Chen,
  • Jizhe Wang,
  • Yuan Yao,
  • Nanjia Zhou,
  • Weicheng Cui

DOI
https://doi.org/10.34133/research.0122
Journal volume & issue
Vol. 6

Abstract

Read online

Soft pneumatic actuators (SPAs) have attracted enormous attention in the growing field of robotics. Among different SPAs, composite reinforced actuators (CRAs) are widely used because of their simple structure and high controllability. However, multistep molding, a time-consuming method, is still the predominant fabrication method. Here, we propose a multimaterial embedded printing method (ME3P) to fabricate CRAs. In comparison with other 3-dimensional printing methods, our method improves fabrication flexibility greatly. Via the design and fabrication of the reinforced composites’ patterns and different geometries of the soft body, we demonstrate actuators with programmable responses (elongation, contraction, twisting, bending, and helical and omnidirectional bending). Finite element analysis is employed for the prediction of pneumatic responses and the inverse design of actuators based on specific actuation needs. Lastly, we use tube-crawling robots as a model system to demonstrate our ability to fabricate complex soft robots for practical applications. This work demonstrates the versatility of ME3P for the future manufacturing of CRA-based soft robots.