Maderas: Ciencia y Tecnología (Jan 2024)

Characterization of nanocellulose/pyrolysis oil nanocomposite films

  • Mustafa Zor,
  • Engin Kocatürk,
  • Ferhat Şen,
  • Barlas Oran,
  • Zeki Candan

DOI
https://doi.org/10.22320/s0718221x/2024.25
Journal volume & issue
Vol. 26

Abstract

Read online

In this study, the sustainable recycling of tire waste, which is frequently formed in the automotive industry, and the transformation of this recycling into valuable materials are in question. Waste tire pyrolysis oil obtained as a result of the pyrolysis of tire wastes was evaluated for the first time as a reinforcement element in nanocellulose-based nanocomposite films. Nanocellulose was produced using the TEMPO method (2,2,6,6-tetramethylpiperidine-1-oxyl radical). 5 %, 10 % and 20 % pyrolysis oil were added to the nanocomposite films. Thermal (thermal gravimetric analysis, differential scanning calorimetry, thermomechanical (dynamic mechanical thermal analysis and morphological (scanning electron microscopy) characterization of the produced nanocomposite films were performed. The highest thermal stability was observed in the nanocellulose/pyrolysis oil-20 sample with 20% pyrolysis oil additive. The pyrolysis oil-reinforced nanocomposites resulted in an excellent increase in storage and loss modulus. The storage modulus of the 20 % pyrolysis oil added sample at 100 °C was exactly 18 times that of pure nanocellulose. Nanocellulose-based nanocomposite films with superior thermal properties and structural compatibility demonstrated by characterized results have been shown to be pioneers in future industrial applications such as pharmacy, coating, green packaging.

Keywords