Discrete Dynamics in Nature and Society (Jan 2018)
Signal Preemption Control of Emergency Vehicles Based on Timed Colored Petri Nets
Abstract
This paper focuses on the use of timed colored Petri nets (TCPN) to study emergency vehicle (EV) preemption control problem. TCPN is adopted to establish an urban traffic network model composed of three submodels, namely, traffic flow model, traffic signal display and phase switch model, and traffic signal switch control model. An EV preemption optimization control system, consisting of monitoring subsystem, phase time determination subsystem, and phase switching control subsystem, is designed. The calculation method of the travelling speed of EV on road sections is presented, and the methods of determining the actual green time of current phase and the other phase are given. Some computational comparisons are performed to verify the signal preemption control strategies, and simulation results indicate that the proposed approach can provide efficient and safe running environments for emergency vehicles and minimize EV’s interference to social vehicles simultaneously.