PLoS ONE (Jan 2017)

Expression profiling of Chrysanthemum crassum under salinity stress and the initiation of morphological changes.

  • Zhiyong Guan,
  • Yitong Feng,
  • Aiping Song,
  • Xiaomeng Shi,
  • Yachao Mao,
  • Sumei Chen,
  • Jiafu Jiang,
  • Lian Ding,
  • Fadi Chen

DOI
https://doi.org/10.1371/journal.pone.0175972
Journal volume & issue
Vol. 12, no. 4
p. e0175972

Abstract

Read online

Chrysanthemum crassum is a decaploid species of Chrysanthemum with high stress tolerance that allows survival under salinity stress while maintaining a relatively ideal growth rate. We previously recorded morphological changes after salt treatment, such as the expansion of leaf cells. To explore the underlying salinity tolerance mechanisms, we used an Illumina platform and obtained three sequencing libraries from samples collected after 0 h, 12 h and 24 h of salt treatment. Following de novo assembly, 154,944 transcripts were generated, and 97,833 (63.14%) transcripts were annotated, including 55 Gene Ontology (GO) terms and 128 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression profile of C. crassum was globally altered after salt treatment. We selected functional genes and pathways that may contribute to salinity tolerance and identified some factors involved in the salinity tolerance strategies of C. crassum, such as signal transduction, transcription factors and plant hormone regulation, enhancement of energy metabolism, functional proteins and osmolyte synthesis, reactive oxygen species (ROS) scavenging, photosystem protection and recovery, and cell wall protein modifications. Forty-six genes were selected for quantitative real-time polymerase chain reaction detection, and their expression patterns were shown to be consistent with the changes in their transcript abundance determined by RNA sequencing.