PLoS Biology (Nov 2024)
Decrease in decision noise from adolescence into adulthood mediates an increase in more sophisticated choice behaviors and performance gain.
Abstract
Learning and decision-making undergo substantial developmental changes, with adolescence being a particular vulnerable window of opportunity. In adolescents, developmental changes in specific choice behaviors have been observed (e.g., goal-directed behavior, motivational influences over choice). Elevated levels of decision noise, i.e., choosing suboptimal options, were reported consistently in adolescents. However, it remains unknown whether these observations, the development of specific and more sophisticated choice processes and higher decision noise, are independent or related. It is conceivable, but has not yet been investigated, that the development of specific choice processes might be impacted by age-dependent changes in decision noise. To answer this, we examined 93 participants (12 to 42 years) who completed 3 reinforcement learning (RL) tasks: a motivational Go/NoGo task assessing motivational influences over choices, a reversal learning task capturing adaptive decision-making in response to environmental changes, and a sequential choice task measuring goal-directed behavior. This allowed testing of (1) cross-task generalization of computational parameters focusing on decision noise; and (2) assessment of mediation effects of noise on specific choice behaviors. Firstly, we found only noise levels to be strongly correlated across RL tasks. Second, and critically, noise levels mediated age-dependent increases in more sophisticated choice behaviors and performance gain. Our findings provide novel insights into the computational processes underlying developmental changes in decision-making: namely a vital role of seemingly unspecific changes in noise in the specific development of more complex choice components. Studying the neurocomputational mechanisms of how varying levels of noise impact distinct aspects of learning and decision processes may also be key to better understand the developmental onset of psychiatric diseases.