Applied Sciences (Jun 2022)

Selection Methodology of Composite Material for Retractable Main Landing Gear Strut of a Lightweight Aircraft

  • Muhammad Ayaz Ahmad,
  • Hamza Rafiq,
  • Syed Irtiza Ali Shah,
  • Sabih Ahmad Khan,
  • Syed Tauqeer ul Islam Rizvi,
  • Taimur Ali Shams

DOI
https://doi.org/10.3390/app12115689
Journal volume & issue
Vol. 12, no. 11
p. 5689

Abstract

Read online

The design and development of high-strength and low-weight composite landing gear struts is still a challenge in today’s world. In this study, a selection methodology for fiber-reinforced composite material for retractable main landing gear struts for specified lightweight aircraft up to 1600 kg mass is proposed. Four different fiber-reinforced composite materials, two each from the glass-fiber and carbon-fiber families, including E-glass fiber/epoxy, S-glass fiber/epoxy, T300 carbon fiber/epoxy, and AS carbon fiber/epoxy, were considered for analysis. For the design and analysis of a main landing gear strut, maximum landing loads for one point and two point landing conditions were calculated using FAA FAR 23 airworthiness requirements. Materials were categorized based on their strength-to-weight ratio and the Tsai-Wu failure criterion. Landing gear struts meeting the Tsai-Wu failure criterion, and having a maximum strength-to-weight ratio, were then modeled for performance under a collision detection test. This research concludes that T300 carbon fibre/epoxy is a recommended material for the manufacture of landing gear struts for specified lightweight aircraft.

Keywords