Micromachines (Dec 2018)

Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications

  • Keisuke Nemoto,
  • Yasutaka Hanada

DOI
https://doi.org/10.3390/mi9120662
Journal volume & issue
Vol. 9, no. 12
p. 662

Abstract

Read online

This work demonstrated the surface microfabrication of the UV-transparent fluoropolymer CYTOP (perfluoro 1-butenyl vinyl ether), by etching-assisted ablation using lasers with different pulse widths. In previous studies, we developed a technique for CYTOP microfluidic fabrication using laser ablation followed by etching and annealing. However, this technique was not suitable for some industrial applications due to the requirement for prolonged etching of the irradiated areas. The present work developed a faster etching-assisted ablation method in which the laser ablation of CYTOP took place in fluorinated etching solvent and investigated into the fabrication mechanism of ablated craters obtained from various pulse width lasers. The mechanism study revealed that the efficient CYTOP microfabrication can be achieved with a longer pulse width laser using this technique. Therefore, the rapid, high-quality surface microfabrication of CYTOP was demonstrated using a conventional nanosecond laser. Additionally, Microfluidic systems were produced on a CYTOP substrate via the new etching-assisted laser ablation process followed by annealing within 1 h, which is faster than the prior work of the microfluidic chip fabrication. Subsequently, CYTOP and polydimethylsiloxane substrates were bonded to create a 3D microfluidic chip that allowed for a clear microscopic image of the fluid boundary.

Keywords