Epidemiology and Psychiatric Sciences (Jan 2024)
Alleviating the burden of depression: a simulation study on the impact of mental health services
Abstract
Abstract Aims Depressive disorders are ranked as the single leading cause of disability worldwide. Despite immense efforts, there is no evidence of a global reduction in the disease burden in recent decades. The aim of the study was to determine the public health impact of the current service system (status quo), to quantify its effects on the depression-related disease burden and to identify the most promising strategies for improving healthcare for depression on the population level. Methods A Markov model was developed to quantify the impact of current services for depression (including prevention, treatment and aftercare interventions) on the total disease burden and to investigate the potential of alternative scenarios (e.g., improved reach or improved treatment effectiveness). Parameter settings were derived from epidemiological information and treatment data from the literature. Based on the model parameters, 10,000,000 individual lives were simulated for each of the models, based on monthly transition rates between dichotomous health states (healthy vs. diseased). Outcome (depression-related disease burden) was operationalized as the proportion of months spent in depression. Results The current healthcare system alleviates about 9.5% (95% confidence interval [CI]: 9.2%–9.7%) of the total disease burden related to depression. Chronic cases cause the majority (83.2%) of depression-related burden. From a public health perspective, improving the reach of services holds the largest potential: Maximum dissemination of prevention (26.9%; CI: 26.7%–27.1%) and treatment (26.5%; CI: 26.3%–26.7%) would result in significant improvements on the population level. Conclusions The results confirm an urgent need for action in healthcare for depression. Extending the reach of services is not only more promising but also probably more achievable than increasing their effectiveness. Currently, the system fails to address the prevention and treatment of chronic cases. The large proportion of the disease burden associated with chronic courses highlights the need for improved treatment policies and clinical strategies for this group (e.g., disease management and adaptive or personalized interventions). The model complements the existing literature by providing a new perspective on the depression-related disease burden and the complex interactions between healthcare services and the lifetime course.
Keywords