Scientific Reports (Sep 2024)

Immunogenetic profiles of 9 human herpes virus envelope glycoproteins

  • Apostolos P. Georgopoulos,
  • Lisa M. James

DOI
https://doi.org/10.1038/s41598-024-71558-1
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Human herpes viruses (HHV) are ubiquitous and have been implicated in numerous long-term health conditions. Since the association between viral exposure and long-term health impacts is partially influenced by variation in human leukocyte antigen (HLA) genes, we evaluated in silico the binding affinities of 9 HHV envelope glycoproteins with 127 common HLA Class I and Class II molecules. The findings show substantial variability in HHV binding affinity across viruses, HLA Class, HLA genes, and HLA alleles. Specific findings were as follows: (1) the predicted binding affinities of HHVs were characterized by four distinct groupings—[HHV1, HHV2], [HHV3, HHV4, HHV5], [HHV6A], [HHV6B, HHV7, HHV8]—with relatively lower binding affinities for HHV1, HHV2, and HHV6a compared to other HHVs; (2) significantly higher binding affinity was found for HLA Class I relative to Class II; (3) analyses within each class demonstrated that alleles of the C gene (for Class I) and DRB1 gene (for Class II) had the highest binding affinities; and (4) for each virus, predicted binding affinity to specific alleles varied, with HHV6a having the lowest affinity for HHV-HLA complexes, and HHV3, HHV4, and HHV5 having the highest. Since HLA-antigen binding is the first step in initiating an immune response to foreign antigens, these relative differences in HHV binding affinities are likely to influence long-term health impacts such that the cells infected with viruses associated with higher binding affinities across common HLA alleles may be more reduced in numbers, thereby lowering the potential for long-term sequelae of their infections.

Keywords